Mental Models, Metaphor and Design

William Hudson
william.hudson@syntagm.co.uk

Handouts
http://www.syntagm.co.uk/design/articles.htm

Mental Models

- Psychological representations of real, hypothetical, or imaginary situations
- First postulated by the Scottish psychologist Kenneth Craik (1943)

 The mind constructs ‘small-scale models’ of reality to anticipate events, to reason, and to underlie explanation.

- Their structure corresponds to the structure of what they represent
Mental Models

- Users acquire mental models through...
 - Interaction
 - Explanation

- Two types of model
 - Functional – knowing what to do but not why (e.g. shutting down PC before switching off)
 - Structural – understanding the components and their relationships (why)

- Structural models allow us to solve problems

Mental Models - Example

- The heating has just come on but the room is cold. The room thermostat is set where you normally have it (higher than the current temperature)

- Do you...
 1. Turn it up hoping that the room will heat faster?
 2. Leave it where it is and just wait?
Mental Models

- A room thermostat is not like a tap (valve)

Mental Models

- A room thermostat is like a switch
Mental Models - Notation

- Primarily entities and their relationships

User's mental model of central heating system in UML
Class Diagram Notation

Mental Models – Whose?

- Different roles need different models

Engineer’s mental model of central heating system
Mental Models – Whose?

- Designers and users models for an interactive system (Don Norman in *User-Centered System Design*)

Three models from OVID
Conceptual Models

- To...
 - Distinguish between the various models
 - And reflect that mental models are not directly under our control
- …we will call the mental model we want users to acquire the users’ conceptual model (or just conceptual model)

Conceptual Models

- How can users acquire the ‘right’ mental model?
 - Training
 - Documentation, guides or online help
 - Interaction with the system
- In systems for general use (e.g. e-commerce), interaction is usually the only realistic approach
Conceptual Design

- To create a system that will be easy to use, the conceptual model must be…
 - Deliberately designed
 - Simple enough to be understood through interaction
 - Appropriate to users’ tasks
- Use familiar concepts and terms
- Provide adequate feedback
- Be consistent (especially with users’ expectations)

Example – Inappropriate Concept

- Expiry date
 - What are common examples of expiry dates?
 - What action(s) do you associate with expiry dates?
Example – Inappropriate Concept

- Secure email certificates have expiry dates

- But discarding a certificate means losing access to all email encrypted with it

Example – Inappropriate Concept

- Security certificates are more like insurance policies than foods or drugs
- Renewal date would have been a better concept
Benefits of Conceptual Models

- Provide an opportunity for innovation and simplification
- Define concepts and terms to for UI
- Framework for implementation
 - ‘Core’ model is elaborated
 - ‘Views’ and other UI components added
- Basis for OO development
- Control over ‘feature bloat’

Reverse Engineering

- Conceptual models can be ‘reverse engineered’ from existing applications or web sites
- Expert review or with users
- Three step process:
 - Visual inspection (can use screen shots)
 - Interaction with controls (but no navigation)
 - Unrestricted use
- Alternatively, a user’s conceptual model can be elicited following use of the system
Reverse Engineering

- Major concepts and relationships should be apparent from visual inspection
- Primary results are entities and relationships (operations and attributes at a more detailed level)
- Users’ conceptual models can be compared with designers’
- Careful questioning of users might be necessary to validate results (e.g. ‘what would happen if…’)

Entities from visual inspection of Amazon site
Reverse Engineering

- Entities
 - Usually nouns
 - Frequently gleaned from navigation (e.g. menus, tabs, links)
 - Can be other UI components (e.g. panels, popups, dialogs)

- Relationships
 - Need not be named
 - Gleaned from visual relationships
 - More reliant on interaction
Metaphor

- Metaphors make use of existing conceptual models
- Do not have to be literal or visual, but they can provide a source of images
 - Desktop metaphor: inbox, folder
 - Piggly Wiggly metaphor: shopping basket, checkout
- Relationships of interest need to be related in some way: ‘systemic’ (e.g. we are not interested in the size of shopping baskets)

Myths About Metaphors

- Easy to learn, difficult to use
 - Difficulty usually comes from visual metaphors, e.g. Microsoft’s Bob UI
Myths About Metaphors

- Too limiting
 - Only when taken literally or visually
- Windows desktop proves metaphor is bad
 - *Broken* metaphors are bad
 - Windows bears little resemblance to ‘real’ desktop metaphor

Desktop Metaphor

‘Real’ desktop metaphor is closer to Xerox Star than Windows
Desktop Metaphor

Xerox Star desktop from http://www.acypher.com

Other Aspects of Metaphor

- Metaphor can be used at different levels
 - High level: desktop, shopping
 - Low level: scissors for 'cut', renewal date
- Iceberg model of metaphor
 - Some terms have hidden relationships

Check in

Reservation

visible

presented at

invisible
Design Exercise

- Offset mortgages
 - Cash savings used to reduce mortgage payments
 - Can be a single account with a large overdraft
 - Sometimes mortgage and savings presented separately
 - Customers uncomfortable with large overdraft and lack of separate accounts

Design Exercise

- Consider metaphors that might be appropriate for managing money and allowing greater flexibility (what did people use to do before everyone had a bank account?)
Design Exercise (Solution)

- People used to put money into different containers:
 - Jars
 - Tins
 - Socks
 - Mattresses
 - Bags
 - Envelopes

Design Exercise

- What are the basic operations that can be performed on these containers?
- What extensions could we make for a web implementation?
Design Exercise (Solution)

- Basic operations
 - Create/destroy
 - View balance (count money)
 - Add funds
 - Remove funds

- Extensions
 - Automatic interest calculation
 - Regular credits or debits
 - Limits (e.g. when enough funds for holiday, boat)

Design Exercise (Solution)

- Conceptual model for ‘Jars’ account

(UML class diagram)
You Are Here
- Contextual enquiry
- Abstract use cases
- **Conceptual design**
- Concrete use cases
- Paper prototyping + usability testing
- Visual design + usability testing
- Implementation + usability testing

Further Reading
- http://cognet.mit.edu/MITECS/Entry/johnson-laird
 - Mental models
- http://www.syntagm.co.uk/design/articles.htm
- http://www.syntagm.co.uk/design/casestudies.htm
 - Brief case studies on metaphor and conceptual modelling