
CHAPTER 9

Toward Unified Models
in User-Centered and
Object-Oriented Design

William Hudson

Abstract

Many members of the HCI community view user-centered design, with its focus
on users and their tasks, as essential to the construction of usable user inter-
faces. However, UCD and object-oriented design continue to develop along
separate paths, with very little common ground and substantially different activ-
ities and notations. The Unified Modeling Language (UML) has become the de
facto language of object-oriented development, and an informal method has
evolved around it. While parts of the UML notation have been embraced in
user-centered methods, such as those in this volume, there has been no con-
certed effort to adapt user-centered design techniques to UML and vice versa.
This chapter explores many of the issues involved in bringing user-centered
design and UML closer together. It presents a survey of user-centered tech-
niques employed by usability professionals, provides an overview of a number
of commercially based user-centered methods, and discusses the application of
UML notation to user-centered design. Also, since the informal UML method is
use case driven and many user-centered design methods rely on scenarios, a
unifying approach to use cases and scenarios is included.

9.1 Introduction

9.1.1 Why Bring User-Centered Design to UML?

A recent survey of software methods and techniques [Wieringa 1998] found that at least

19 object-oriented methods had been published in book form since 1988, and many

more had been published in conference and journal papers. This situation led to a great

313

deal of division in the object-oriented community and caused numerous problems for

anyone considering a move toward object technology.

The picture today could not be more different. In classes that I teach, and when I’m

working with my development customers, UML is the predictable answer to any ques-

tion concerning process or notation. A simple comparison of methods and processes1

mentioned on the Web (see Figure 9.1) shows UML outstripping its nearest competitor

(Object Modeling Technique, or OMT) by a factor of four. A leading online book retailer

lists no fewer than 64 titles on the subject, with new volumes seeming to appear at the

rate of two or three a month.

The focus on a single object-oriented notation has numerous benefits. Skills are more

readily transferred between projects, communication between designers and developers

314 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

1 There is quite a bit of disagreement over the meanings of “process” and “method” (compare Jacobson

et al. [1992] and Olson and Moran [1995]). In this chapter, I have used the term “method” unless

“process” has been used by the authors of the approach being discussed.

FIGURE 9.1 Web references to UML and object-oriented methods

81,970

17,502 16,182

2,878 1,726 547

SyntropyObjectoryRUPBoochOMTUML

Note: References were obtained by searching for each term (in English only) on www.raging.com in June 2000. Methods with commonly
occurring names such as “OPEN” and “Fusion” could not be included for obvious reasons. “RUP” is the common abbreviation for the
Rational Unified Process, which is discussed later in this chapter.

is easier, and development support in the form of software tools is steadily improving.

Introducing user-centered techniques to UML would yield similar benefits, and also

increase the awareness of developers to user-centered issues.2

This final point may seem both trivial and contentious. However, my own experience

in developing interactive software and teaching for 30 years is that most systems are

developed with little or no understanding of usability and user-centered issues. Raising

awareness of these issues in a mainstream technology such as UML can only help to in-

crease software usability.

9.1.2 Why Not Another New Method?

I argue against the introduction of another user-centered method for the following reasons.

� It perpetuates the object-oriented/user-centered divide. User-centered design

needs to become a part of mainstream software development, not a collection

of tributaries.

� Methods are not used in a formal way. Developers (object-oriented, user-centered

or any other type) adopt techniques or notations that work for them. What

most developers mean when they say that they are using a method is that they

are using some parts of it. In the user-centered development survey presented

later in this chapter, the most popular technique was used by 93.5 percent of

respondents. In comparison, the most popular user-centered method was used

by only 11.8 percent.3

� New methods are distractions to most development organizations. While some

parts of the computer industry are perpetually searching for a new “magic bul-

let,” most development managers live in dread of substantial technological

change. Books, training, consultants, new staffing requirements, and reduced

efficiency during the “learning curve” contribute to make this a stressful experi-

ence for all concerned.

Because UML includes use cases, it has the potential to be truly user-centered, given

some appropriate adjustments. My premise is that introducing new or modified tech-

niques to UML is, if nothing else, psychologically more acceptable to developers than

introducing a new method. I also believe that this approach has a better chance of chang-

ing software development practice than the introduction of another new method.

9.1 Introduction | 315

2 See Chapter 10 in this volume for a definition and discussion of user-centered design.

3 Techniques are the constituents of methods and can be thought of as discrete high-level tasks for the

user of a method.

9.1.3 How Can UML Be Made User-Centered?

A preliminary issue that I need to address is that UML is a language, not a method (hence

UML, not UMM). Consequently, when developers state that they are using the UML

method, they mean an informal method that has evolved around UML thanks largely

to one of the earliest books on the subject: UML Distilled [Fowler 1997]. In addition,

the UML notation draws heavily on the three methods that precede it: Booch [Booch

1994a], Objectory [Jacobson et al. 1992], and OMT [Rumbaugh et al. 1991]. The result

is the informal method that I describe in Section 9.3.

Is UML a suitable basis for user-centered design? Like Objectory, the informal UML

method is use case driven. It was Jacobson’s original intention that use cases would allow

systems to be built for their users [Jacobson 1987, p. 186]. However, it is now widely

accepted [Cockburn 1997a, 1997b; Constantine 1994, 1995; Constantine and Lock-

wood 1999; Graham 1997] that use cases are too vague in their definition and varied in

their use to be truly effective. Cockburn addressed this issue by trying to catalogue

the variations and by focusing attention on a specific subset he called “goal-directed

use cases.” Constantine saw problems with unnecessary detail that led to premature

design decisions and introduced a form of abstract use case he called “essential” (see Chap-

ter 7). Meanwhile, Graham placed one foot firmly in the human-computer interaction

(HCI) camp and suggested task scripts as an alternative (see [Graham et al. 1997]).

Not surprisingly, use cases top the list of problems that need to be addressed

before the informal UML method can be considered user-centered. The complete list

follows.

� Confusion over use cases. The purpose and content of use cases for user-

centered design need to be refined and explained.

� No separation of user and domain models. Object-oriented methods in general

do not acknowledge the difference between the problem domain and a user’s

understanding of the problem domain.4

� No deliberate user interface design. In many cases, design of the user interface is

left to the developer who is responsible for the underlying functionality. This

allows no proper opportunity to design the user interface as a whole.

� Lack of contextual information. User needs can vary dramatically according to

context—that is, the set of circumstances and conditions under which a task is

performed. In common with most other object-oriented approaches to software

316 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

4 To be absolutely fair, it may be that some object-oriented methods intend the domain model to be a

user’s conceptual model, but few if any methods adequately explain what their domain models include.

development, UML does not take context into account, with the exception of

brief task descriptions that may appear in use cases.

� No usability evaluation. This criticism is a little unfair but necessary. UML is

primarily an analysis and design notation. It does not concern itself with how

software is written and tested. However, as most usability practitioners will

confirm, you can’t have a user-centered approach without usability evaluation.

(This is also the view taken by the ISO 13407 standard for human-centered sys-

tems design [ISO 1999].)

Usability evaluation is an example of one technique that we might incorporate into

UML to make it more user centered. As there are dozens of techniques (see, for example,

Hackos and Redish [1998] and Mayhew [1999]), how do we decide which are the most

effective? After all, we can probably add only a small number to an existing method with-

out appearing to hijack it.

The approach that I have taken is to conduct a survey of effective user-centered tech-

niques and methods and then show how they could be combined with an informal UML

method. The remainder of this chapter presents the survey, describes the current informal

UML method, provides a unified approach to scenarios and use cases, introduces the “top

ten” user-centered techniques to the UML method, discusses the application of UML to

user-centered development, and compares the resulting method with other use case-driven

approaches.

9.2 Survey of User-Centered Techniques and Methods

9.2.1 Description of the Survey

A self-selection survey5 was conducted using three e-mail lists that focus on HCI and

usability.

1. The ACM CHI Web list

2. A usability list operated by Clemson University

3. The British HCI Group News Service

Respondents were asked to rate the frequencies with which they employed a number of

user-centered techniques, tools, and methods. They were asked to include only those that

they found to be effective. These items are summarized in Table 9.1 and described in

9.2 Survey of User-Centered Techniques and Methods | 317

5 I am grateful to Nigel Bevan at Serco Usability Services for his help in drafting the questionnaire for the

survey and for helping make a charitable contribution for each response received.

detail in Sections 9.2.3 and 9.2.4. Section 9.2.2 presents the ten most popular techniques

reported in the survey.

Sixty-five percent of the responses were from the United States; the remainder were

international. The majority of respondents were usability practitioners. Slightly fewer

318 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

TABLE 9.1 User-Centered Techniques, Tools, and Methods Surveyed*

User-Centered Techniques and Tools User-Centered Methods

Stakeholder meeting Design for usability [John Gould]

User analysis/profiling GUIDE

Personas [Alan Cooper 1999] LUCID

Task identification OVID

Comprehensive (e.g., hierarchical) task analysis STUDIO

Users’ conceptual models (of the problem domain) Usage-centered design/software for use
[Constantine and Lockwood 1999]Contextual analysis

Evaluate existing system

Set usability requirements

Set quantitative usability goals

Use case analysis

Essential use cases [Constantine and Lockwood 1999]

Scenarios of use

Low-fidelity (e.g., paper) prototyping

Use of style guides

Visual interface design

Navigation design

Expert (heuristic) usability evaluation

Informal usability testing

Formal (e.g., quantitative) usability testing

Usability checklists

Attitude questionnaires

Usability surveys

*The lists are presented in the order in which they appeared in the questionnaire. For the techniques and tools, this coincides approxi-
mately with their order of use within the development process. Methods were presented alphabetically. Respondents were also free to
write in other techniques or methods, although very few were mentioned by more than one or two respondents. The results are based
on a total of 93 respondents.

than half of the respondents worked on Web development exclusively, with the bulk of

the remainder splitting their efforts between Web and desktop applications. A small

number worked exclusively on desktop applications and in other more specialized areas.

Further results are shown in Tables 9.2 and 9.3.

9.2 Survey of User-Centered Techniques and Methods | 319

TABLE 9.2 Respondents by Country and by Job Function

Respondents by Country, % Respondents by Job Function, %

United States 61.3 Usability practitioner 64.5

United Kingdom 12.9 Information architect 7.5

Netherlands 3.2 Developer 6.5

Sweden 3.2 Developer and usability/HCI 6.5

Belgium 2.2 HCI researcher 4.3

France 2.2 Project manager 3.2

Israel 2.2 Technical writer 2.2

Australia 2.2 Software testing/QA 2.2

Canada 2.2 Design director 2.2

Germany 2.2 Technology manager 1.1

Finland 2.2

Ireland 1.1

Iraq 1.1

Italy 1.1

Mexico 1.1

TABLE 9.3 Respondents by Product Type and by Time Spent Applying Techniques and Methods

Respondents by Time Spent Applying User-Centered
Respondents by Product Type, % Techniques and Methods, %

Web only 45.2 All or most 68.8

Mixed Web and desktop 33.3 Less than half 19.4

Desktop only 11.8 Occasionally 11.8

Other 5.4

Consumer electronics 2.2

Mobile comm’s 1.1

Multimedia 1.1

The bulk of the questionnaire contained two lists. The first was a list of common

user-centered techniques and tools; the second was a list of user-centered methods.

Respondents were asked to rate the frequency of use for each technique, tool, or method

that they found to be effective. The results shown in Figure 9.2 have been simplified and

show only the percentage of respondents that used each technique or method.

320 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

Informal usability testing
User analysis/profiling

Evaluate existing system
Low-fidelity (e.g., paper) prototyping
Expert (heuristic) usability evaluation

Task identification
Navigation design

Scenarios of use
Set usability requirements

Visual interface design
Use of style guides

Formal usability testing
Stakeholder meeting

Comprehensive task analysis
Users’ conceptual models

Contextual analysis
Usability checklists

Set quantitative usability goals
Attitude questionnaires

Usability surveys
Use case analysis

Essential use cases
Personas

Usage-centered design method
Other/in-house method

Focus groups
LUCID method

Observations
User interviews

Competitive analysis
Storyboards

Cognitive walkthrough (with team)
Usability walkthroughs (with team)

OVID method
GUIDE method

ISO 13407 method

93.5%
89.2%

88.2%
84.9%

83.9%
82.8%

78.5%
76.3%

74.2%
74.2%

67.7%
67.7%
66.7%

64.5%
60.2%

59.1%
58.1%
58.1%

54.8%
50.5%

48.4%
21.5%

20.4%
11.8%

10.8%
8.6%

7.5%
6.5%

3.2%
3.2%

2.2%
2.2%
2.2%
2.2%
2.2%
2.2%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Less Popular More Popular

FIGURE 9.2 Percentages of respondents employing user-centered techniques and methods (excludes
techniques and methods used by fewer than 2 percent of respondents)

9.2.2 The User-Centered Top Ten

Listed below are the ten most popular user-centered techniques reported in the survey. At

least three-quarters of the respondents found them to be effective and reported having

used them.

1. Informal usability testing (93.5%)

2. User analysis/profiling (89.2%)

3. Evaluate existing system (88.2%)

4. Low-fidelity (e.g., paper) prototyping (84.9%)

5. Expert (heuristic) usability evaluation (83.9%)

6. Task identification (82.8%)

7. Navigation design (78.5%)

8. Scenarios of use (76.3%)

9. Set usability requirements (74.2%)

10. Visual interface design (74.2%)

Interestingly, with only a few exceptions, these techniques were used in the methods sur-

veyed, as shown in Table 9.4. However, the methods themselves were used infrequently

in comparison with the individual techniques.

Listed below are the methods in reverse order of popularity.

1. Usage-centered design (11.8%)

2. Other/in-house method (10.8%)

3. LUCID (7.5%)

4. OVID (2.2%)

5. GUIDE (2.2%)

6. ISO 13407 (2.2%)

7. STUDIO (1.1%)6

Because some respondents used more than one method (one reported using six, which I think

shows either a lack of perseverance or a surfeit of indecision), the total number using any

method was 28 percent. (Bear in mind that respondents defined for themselves what they

meant by “used.” Many commented that they used only parts of method.) In contrast, 100

percent of the respondents used one or more of the top ten techniques.

So, we have discovered two things. First, Table 9.4 shows that the techniques are not

only important individually but also form an important part of user-centered methods (at

least those considered here). Second, even though the methods make use of very popular

9.2 Survey of User-Centered Techniques and Methods | 321

6 STUDIO was omitted from Figure 9.2 because it fell below the 2 percent minimum.

techniques, the methods themselves are not popular by comparison. I am tempted to view

this as an indication that more formal methods on the whole are not used, and use this as

a motivation for incorporating the techniques into an informal UML method.7

9.2.3 User-Centered Techniques

The techniques are described below, in the order in which they appeared in the question-

naire and in Table 9.1.

� Stakeholder meeting. Normally held during project inception. A stakeholder is

anyone with a vested interest in the project, such as a manager, designer, or user

[Rouse 1991].

322 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

TABLE 9.4 Techniques Used in User-Centered Methods

Usage-Centered
Technique GUIDE LUCID OVID STUDIO Design

Informal usability testing Yes Yesd Yesc Yesb Yese

User analysis/profiling Yes Yesd Yesc Yesb Yese

Evaluate existing systema

Low-fidelity (e.g., paper) prototyping Yes Yesd Yesc Yesb Yese

Expert (heuristic) usability evaluation Yes Yesd Yesc Nob Yese

Task identification Yes Yesd Yesc Yesb Yese

Navigation design Yes Yesd Yesc Yesb Yese

Scenarios of use Yes Yesd Yesc Yesb Noe

Set usability requirements Yes Yesd Yesc Yesb Yese

Visual interface design Yes Yesd Yesc Yesb Yese

a None of the methods explicitly mentions the evaluation of existing systems, although they all imply that this would be done as part of
user and task analysis.

b STUDIO refers to these as superficial designs. They are subject only to heuristic evaluation [Browne 1993, pp. 129–131].
c Called a “walkthrough” or an “inspection” in OVID.
d LUCID is an approach rather than a method and is not fully specified. However, it does describe the design of the task flow, which is

approximately equivalent to navigation design.
e Constantine and Lockwood prefer use cases to scenarios in the design phase of development. However, they do use scenarios in

usability inspections.

7 Although many of the respondents were usability practitioners, they still would have been aware of

performing their roles as part of a method if one was being used. Most of the other job functions listed

in Table 9.1 would also have had direct involvement with or awareness of a method.

� User analysis/profiling. Covers a variety of techniques that involve understand-

ing and describing users [Hackos and Redish 1998, Mayhew 1992].

� Personas. Alan Cooper uses this term to represent hypothetical archetypes of

real users. Cooper argues that products should be designed for very specific per-

sonas, and this approach has been taken up with some interest by the HCI com-

munity [Cooper 1999].

� Task identification. Also task lists, inventories, and profiles. Identification of the

tasks users need to perform, usually as part of task analysis. Task identification

needs to be done by interacting with users. Profiling normally includes task fre-

quencies and other characteristics [Hackos and Redish 1998, Mayhew 1999,

Shneiderman 1998].

� Comprehensive (for example, hierarchical) task analysis. Rigorous analysis of

user goals and tasks. Hierarchical task analysis (HTA) is one of the more com-

mon forms (see Task identification, above, for references).

� Users’ conceptual models (of the problem domain). Sometimes referred to simply

as a “user model” or, as in Chapter 10, as a “conceptual model.” This model is

intended to reflect users’ understanding of the problem domain, often in the form

of conceptual objects and the relationships between them [Norman 1986].

� Contextual analysis. Contextual inquiry, ethnography, and related techniques

that involve understanding users in their environments [Beyer and Holtzblatt

1998, Mayhew 1999].

� Evaluate existing system. A common technique not limited to user-centered

design. Sometimes performed as part of contextual analysis [Mayhew 1999].

� Set usability requirements. Usually qualitative, as in “The system should pro-

vide consistency across components” [Mayhew 1999].

� Set quantitative usability goals. Measurable goals, as in “Novice users (defined

as first-time users) should take no longer than three minutes to fill in a certain

online subscription form” [Mayhew 1999].

� Use case analysis. Ivar Jacobson’s use cases, as found originally in Objectory

and more recently in UML and RUP [Jacobson et al. 1992, 1999].

� Essential use cases. A form of abstract use case that focuses on the essence of an

interaction between a user and a system [Constantine and Lockwood 1999].

� Scenarios of use. Descriptions in almost any form (for example, visual or narra-

tive) of users performing tasks [Carroll 1995].

� Low-fidelity (for example, paper) prototyping. Crude mock-ups of user inter-

faces or portions such as windows, Web pages, or dialogues. Low-fidelity proto-

types may be reviewed with users or form the basis of scenarios used to explore

interactions [Nielsen 1993].

9.2 Survey of User-Centered Techniques and Methods | 323

� Use of style guides. Style guides are generally recommended for desktop applica-

tions, because they provide consistency within the platform, organization, or prod-

uct family. They are also becoming popular for Web site design [Mayhew 1999].

� Visual interface design. Any deliberate design of the visual aspects of an inter-

face (as opposed to the interface evolving as a side effect of the development

process). Visual design is often done in conjunction with low-fidelity prototyp-

ing [Nielsen 1995].

� Navigation design. This has become better defined with respect to the Web, but it

has always been an important part of any user interface. Navigation design deter-

mines how users move between Web pages, windows, or dialogues [Hackos and

Redish 1998, Fleming 1998].

� Expert (heuristic) usability evaluation. Review of a user interface by a usability

practitioner familiar with design principles [Nielsen 1993].

� Informal usability testing. Usually direct observation, while asking users to

think aloud [Tognazzini 1992, Nielsen 1993].

� Formal (for example, quantitative) usability testing. More planned or rigorous

testing than informal direct observation. May be quantitative, may be set in a

usability lab, or may involve detailed analysis of video tapes.

� Usability checklists. Primarily employed during evaluation and inspection, but

may be used at other times in the development process. They are used to ensure

that all desired aspects of usability have been considered [Nielsen and Mack 1994].

� Attitude questionnaires. Qualitative (rather than quantitative) questionnaires

used to gauge user attitudes toward systems or system components, including

individual Web pages or dialogues [Nielsen 1993].

� Usability surveys. Conducted to obtain more specific and frequently quantita-

tive data on usability or factors directly affecting usability, such as environment,

documentation, and training [Hackos and Redish 1998].

9.2.4 User-Centered Methods

The survey included five existing user-centered software development methods. This was

done to determine the popularity of methods (as opposed to techniques).

The methods presented in the questionnaire are described briefly in the following sec-

tions. All have been developed from practical experience. Two are British in origin

(GUIDE and STUDIO), two are American (LUCID and Usage-Centered Design), and

one is Anglo-American (OVID). Most have been published internationally in book

form.8 The methods were presented in alphabetical order.

324 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

8 LUCID is published on the Web and described in Shneiderman [1998]. See Section 9.2.4.2 for references.

9.2.4.1 Graphical User Interface Design and Evaluation (GUIDE)

GUIDE [Redmond-Pyle and Moore 1995] had its origins in the development of large

Windows-based applications at LBMS9 in the late 1980s and early 1990s. It is based

largely on practical experience and the participation of one of the authors in the British

government’s Structured Systems Analysis and Design Method (SSADM) standards

working group for graphical user interface (GUI) development.

Figure 9.3 shows the relationship between user-centered GUI design (the shadowed

rectangles) and system design. Linkages between system design and GUI design are shown

9.2 Survey of User-Centered Techniques and Methods | 325

9 For collectors of acronyms, LBMS stands for Learmonth and Burchett Management Systems.

FIGURE 9.3 System and GUI analysis and design in GUIDE (adapted from Redmond-Pyle and Moore [1995,
p. 45])

Define
business

objectives/
requirements

Define Users
and Usability
Requirements

Analyze/design
business
process

Specify
Business

Processing

Model
System
Data

Model
business

data

Model User
Objects

Model User
Tasks

Define Style
Guide

Design,
Prototype, and
Evaluate GUI

System Design
and

Implementation

Users

GUI design

Tasks Data model

User
objects

User object
attributes

with heavy arrows and are typical of the kinds of interactions that occur between user-

centered and software design activities in many of the methods to be described.

GUIDE includes the following features, which we will come to recognize in this chap-

ter as common to user-centered methods.

� Initial focus on user and task analysis

� Development of a user’s conceptual model (partly derived from the business

data model in GUIDE)

� Design of the user interface prior to system design

9.2.4.2 Logical User-Centered Interaction Design (LUCID)

The LUCID framework [Kreitzberg 1999] was developed at Cognetics Corporation from

its approach to user interface design.10 LUCID has enjoyed some exposure from the HCI

community and appears in books and courses used in the teaching of user interface

design (for example [Shneiderman 1998 pp. 104–107]). Its main phases are shown in

Table 9.5 (from [Kreitzberg 1999].

LUCID is also used as a basis for the Wisdom method described in see Chapter 6.

9.2.4.3 Object, View, and Interaction Design (OVID)

OVID [Roberts et al. 1998] is one of the earliest user-centered design methods to adopt

object-oriented modeling notations. However, rather than using a single domain model,

the authors describe three design models based on Don Norman’s notion of cognitive

engineering [Norman 1986, pp. 45–48]. These models are worth describing in more

detail as they are an important concept in user interface design. The relationship between

the models is shown in Figure 9.4.

� Designer’s model. The designer’s model11 expresses the intended user’s concep-

tual model in terms of the objects and relationships that will be represented in

the interface. Although the term “designer’s model” is in keeping with Nor-

man’s original discussion, this is the model that most methods refer to as the

user’s conceptual model (or user model, or conceptual).

326 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

10 This approach was formerly called Quality Usability Engineering (QUE).

11 The names of the models used here are those found in OVID and in Norman’s writing. Chapter 10 dis-

cusses more recent terminology used in HCI. There an OVID designer’s manual is called a (narrow

sense) conceptual model, an OVID programmer’s model is called a development model, and an OVID

user’s conceptual model is called a neutral model.

� Programmer’s model. The programmer’s (or implementation) model is most

commonly used in object-oriented development methods. It represents the

implementation classes used to build the system.

� User’s conceptual model. This model represents a user’s understanding of a sys-

tem and cannot be directly realized. Because it is not possible to design this model

(it is dependent on an individual user’s previous experience, for example), the

term has come to be used for the intended user’s conceptual model—that is, the

designer’s model in OVID. This rather confusing state of affairs is also described

in Draper and Norman [1986, pp. 496–497].

OVID’s authors make the point, as did Norman, that the user interface must accu-

rately reflect the designer’s model in order for users to acquire a suitable conceptual

9.2 Survey of User-Centered Techniques and Methods | 327

TABLE 9.5 Overview of LUCID Framework (used with permission of Cognetics Corporation)

Phase Activity Description

Concept Envision Develop a clear, shared, and communicable vision of the
product. Decide on the usability goals for the interface design.
Create a “user interface roadmap” to document the prelimi-
nary analysis and concepts developed during these activities.

Design User and task analysis Perform a comprehensive and systematic analysis of user
and task requirements by studying users so as to understand
their needs, expectations, tasks, and work processes; deter-
mine the implications of this information for the interface.

Design and prototype Create a design concept and create a key screen prototype
to illustrate it.

Evaluate and refine Evaluate the prototype for usability and iteratively refine
and expand the design.

Build Complete detailed Complete the detailed screen design for the full program.
design and production Support late-stage changes.

Evaluate and refine Evaluate the complete prototype or early versions of the
program for usability and iteratively refine the design.

Release Release and follow up Plan and implement the introduction of the product to users,
including final usability evaluations to ensure that the product
has met the goals established at the beginning of the process.
Create and monitor feedback mechanisms to gather data for
future releases.

model. For this to happen, all aspects of the user interface must be determined by the

designer’s model, not the programmer’s.12

The focus of the OVID method is in identifying objects of importance to users, group-

ing these objects into views that support users’ tasks, and detailing the interactions

between users and objects. Objects are initially identified through task analysis (although

OVID does not prescribe a technique) and organized into a designer’s object model, ini-

tially based on the user’s model. If designed and implemented effectively, the users will

understand the designer’s model by interacting with the system. The various models are

documented using appropriate object-oriented notation. The cycle of activities is shown in

Figure 9.5.

Objects are users’ conceptual models while views are collections of objects that are

needed to support users’ tasks. (OVID does not specify a particular type of task analysis,

but use case and hierarchical task analyses are given as examples.) Interactions are the

actions that are necessary in the interface in order to perform operations on objects.

Like most other user-centered design methods, OVID is iterative and relies on both

low- and high-fidelity prototyping.

328 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

Designer

Specifies

Realizes

Interacts with

Acquires

Creates

User InterfaceUser

Designer’s Model Programmer’s Model

User’s Conceptual Model

FIGURE 9.4 Relationship between OVID models

12 Norman originally called the user interface the “system image” because it was intended to refer to all

aspects of a system that users might experience (including documentation and training). He did not

explicitly include the programmer’s model.

9.2.4.4 STructured User-Interface Design for Interaction Optimisation (STUDIO)

STUDIO [Browne 1993] is also based on its author’s practical experience in GUI design at

KPMG13 Management Consultants in the early 1990s. Browne advocates using STUDIO

for interface-intensive client applications while continuing the use of system-centered

development for server-side applications. The main stages of the STUDIO development

cycle are as follows.

� Project planning and proposal. Cost benefit analysis, quality planning

� Usability requirements analysis. Preparing the groundwork, evidence collec-

tion, task analysis, validation, reporting of findings

� Task synthesis. Task synthesis (convert analysis findings into a user interface

design), style guide, design specification, user support documentation, forma-

tive evaluation

� Usability engineering. Planning, preparation of evaluation materials, prototype

build and design audit (in parallel with other activities), prototype evaluation,

impact analysis, update specification

� User interface development. Hand over specification, integration/interfacing,

acceptance testing, termination reporting

9.2 Survey of User-Centered Techniques and Methods | 329

Task Analysis

Objects

Tasks

ViewsInteractions

FIGURE 9.5 Cycle of activities in OVID (adapted from Berry et al. [1997]).

13 Another obscure acronym: Klynveld, Peat, Marwick, and Goerdeler.

STUDIO is very detailed in its description of each activity and its deliverables, but it

provides noticeably less guidance on the actual interface design process compared with

methods such as GUIDE and usage-centered design. However, in common with GUIDE

and LUCID, STUDIO includes the development of a user interface style guide. This

approach is not taken with the other methods, but it is useful in ensuring consistent user

interface design, especially for large, multi-team projects.

9.2.4.5 Usage-Centered Design

According to Constantine, “usage-centered design focuses on the work that users are try-

ing to accomplish and on what the software will need to supply through the user interface

to help them accomplish it” [Constantine 1994, p. 23].14 Constantine and Lockwood’s

method includes five key elements:

� Pragmatic design guidelines

� Model-driven design process

� Organized development activities

� Iterative improvement

� Measures of quality

330 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

14 Don’t confuse “user-centered design” and its acronym (user-centered design) with “usage-centered

design.” The latter is the name of Constantine and Lockwood’s method.

Collaborative Requirements Dialogue

User-Role
Modeling

Task
Modeling

Visual and Interaction
Design

Usability Inspection

Abstract
Prototyping

Domain
Modeling

time

User involvement

Esential modeling

Core requirements

Usability Inspection

Object Structure Design
Operational

Contextualization

Concentric
Construction

Architectural
Iteration

Style and Standards Refinem
ent

Help System
 and Docum

entation

OO design and construction

FIGURE 9.6 Usage-centered design activity model (adapted from Constantine
and Lockwood [1999], used with permission)

These elements are common to many user-centered methods, although the extent to

which they are found in individual methods varies. OVID, for example, does not provide

pragmatic design guidelines for many of its suggested activities.

As part of the model-driven design process, three core models are used to identify

users and their relationships to the system.

1. Role model. A collection of user roles and the needs, interests, behaviors, and

responsibilities as they apply to each user role.

2. Task model. Essential use case model (a form of abstract use case, described in

Chapter 7 and Section 9.4.4).

3. Content model. An abstract model of users’ conceptual objects that is similar

to the view model in OVID.

The first two of these models, shown near the top of Figure 9.6, are developed during the

initial activities of the process. The content model is established during the abstract pro-

totyping activity and contributes to visual and interaction design.

Other design activities are performed in parallel with the production of the core models.

These activities are shown in a diagonal layout in Figure 9.6. Most are self-explanatory,

with the exception of operational contextualization. In this activity, Constantine and Lock-

wood take the approach of adapting the design to the actual operating conditions and envi-

ronment of the users. (Other methods prefer to resolve this at an earlier stage, although

each has its benefits: an early and detailed understanding of context may reduce the design

and contextualization effort, while contextualization in parallel with design may provide

more realistic feedback.)

Concentric construction (in layers) and architectural iteration form the implementa-

tion phase of the process. Usability inspection (which includes a number of usability

evaluation techniques) is performed during both design and implementation.

9.3 The Informal UML Method

UML is now published as an industry standard by the Object Management Group

[OMG 1999]. It is also the subject of scores of books and papers. Of these, the first edi-

tion of Martin Fowler’s UML Distilled [1997] is familiar to many object-oriented devel-

opers, because it was one of the first books to be published, and because it presented a

role of UML in a very practical way as an informal method. This is shown in Figure 9.7,

using a fairly self-explanatory workflow notation found in the Unified Software Devel-

opment Process [Jacobson et al. 1999]. The method described here is based on UML Dis-
tilled with the addition of the implementation and functional testing activities (which

UML does not cover and Fowler mentions only briefly).

9.3 The Informal UML Method | 331

9.3.1 Perspectives

Fowler introduces the idea of perspectives based on the modeling approach of Cook and

Daniels [1994].

� Conceptual. The conceptual perspective describes some real or imaginary situa-

tion without regard for any software that may be involved.15 For example, a class

diagram with a conceptual perspective is effectively a problem domain model. (If

it were based on a user’s understanding of the domain, it would be a user’s con-

ceptual model, but this issue was not raised by Cook and Daniels or by Fowler.)

332 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

15 Cook and Daniels used the term “essential” in their original text [Cook and Daniels 1994, p. 12] and

said that their use was different from that of some earlier authors. To prevent confusion, I will retain

Fowler’s substitution of “conceptual.”

FIGURE 9.7 Informal UML Method

Find Actors and
Use Cases

Identify Objects
and Relationships

Interaction
Diagrams from

Use Cases

Identify
Operations

Examine
Dependencies

and Class
Relationships

Specify
Implementation

Implementation Functional
Testing

Use Case Model Class Diagram
(Conceptual)

Interaction
Diagrams

Class Diagram
(Specification)

Package
Diagrams

Class Diagram
(Implementation)

Code Test Results

Note: Workflow diagrams do not usually show iteration. In common with most other object-oriented methods, the
informal UML method is iterative, especially in the early activities.

� Specification. Models produced from a specification perspective are more detailed

than conceptual models and are somewhat closer to the solution domain.16 Fowler

describes this perspective as looking at the interface between objects17, not their

implementation.

� Implementation. Full details of objects (classes), including their detailed behav-

ior and internal representations of state and properties.

Armed with perspectives, Fowler’s description of how the UML notation is applied,

and my own practical experience in using and teaching UML, we can now consider the

informal UML method in a little more detail, as shown in Table 9.6. Simply trying to slot

9.3 The Informal UML Method | 333

TABLE 9.6 Description of Informal UML Method by Activity

Activity Description

Find actors and use cases Actors and use cases are derived from informal scenarios
obtained through discussions with users.

Identify objects and relationships Objects and relationships are extracted from use cases.
Unfortunately, no distinction is made between the domain and
user models (i.e., a user’s understanding of the domain). The
result is a class diagram at the conceptual level, equivalent to a
domain model.

Interaction diagrams from use cases Interaction diagrams elaborate the use cases and aid in the
identification of operations on objects (classes).

Identify operations Each message in an interaction diagram must eventually have a
corresponding operation.

Examine dependencies and class Generalizations (inheritance), aggregations, and associations are
relationships identified and refined.

Specify implementation Iteration and refinement (in increasing detail) finally lead to an
implementation-perspective class diagram. Other diagrams may
also be used to illustrate object behavior.

Implementation Coding and unit testing.

Functional testing Tests that the implemented software performs according to its
specification.

16 It is helpful to view the entire process of software development as bridging a gulf between problem

and solution domains.

17 Classes define objects, but it is convenient to refer to both as objects in many discussions.

user interface design into this process is not very likely to succeed for the reasons that

were mentioned in Section 9.1.3.

� Confusion over use cases.

� No separation of user and domain models.

� No deliberate user interface design.

� Lack of contextual information.

� No usability evaluation.

We need to consider these points in more detail.

9.3.2 Confusion over Use Cases

Ivar Jacobson is credited as the inventor of use cases, and his book Object-Oriented Soft-
ware Engineering (OOSE) [Jacobson et al. 1992] is considered the authoritative source

on the subject. However, in an earlier paper [Jacobson 1987] he described the impor-

tance of use cases in his object-oriented technique, Objectory.

Objectorywas intendedtoallowasystemtobebuilt for itsusers. Jacobsonmade the point

that in order to do this, the behavior of a proposed system must be described. Use cases are the

meansofachieving this.Figure9.8showsasampleusecasediagram.Theuse cases themselves

are usually narratives detailing interactions purely from an external perspective.

Even at an early stage, Jacobson was torn between two conflicting applications of use

cases, which is a problem that recurs through many discussions up to the present day.

334 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

Check Availability

Book Seat(s)

Check InPassenger

Customer

FIGURE 9.8 A use case diagram

First, use cases are a means of describing user interaction with a system from a user’s per-

spective. Second, use cases are a means of describing system behavior from a designer’s

perspective. Superficially, these two applications may seem to be the same, but this appar-

ent similarity depends on the correspondence of the user’s and designer’s perspectives.18

Designers who take the user’s perspective into account will write use cases that are much

more likely to result in user-centered systems.

In contrast, however, consider this example from Jacobson’s paper: “In a telephone

exchange, the local calls and long distance calls constitute two different use cases. In both

cases the user is an A-subscriber” [Jacobson 1987]. The concepts and terminology being

used here are clearly those of a designer, not a user. Users do not consider local and long

distance calls as two different tasks. Nor would they identify themselves as “subscribers.”

If the consequences of this example were to be implemented in a finished telephone sys-

tem, we could expect a certain degree of user confusion and frustration.

This early description of use cases is very similar to the ones found in UML.

� Use cases constitute a “black box” description of behavior.

� Use cases include roles that interact with the systems.

� Roles are adopted by users.

Users later became actors in object-oriented software engineering (OOSE) and consequently

the main focus of attention in use cases (the term “roles” became an abstract concept that

did not appear in most use cases). This probably seemed to be an innocent generalization at

the time. Users are human, but actors include any external entity that can adopt a role and

interact with the system. In hindsight, this small change created the single most confusing

aspect of use cases and certainly detracted from Jacobson’s intended purpose of building

systems for users. Use cases became, in effect, just another way of describing the dynamic

behavior of a system without necessarily providing a clear user focus.

OOSE went on to describe how use cases and objects were different views of the same

system [Jacobson et al. 1992, p. 175]. Again, however, this approach failed to acknowl-

edge that a user’s view can be very different from a designer’s. object-oriented developers

are left with the illusion that they are designing systems for users while the reality is that

the application of use cases is no guarantee of success.

Following the publication of Jacobson’s book, use cases were the subject of much

debate and explanation. Jacobson published a series of articles in the Report on Object-
Oriented Analysis and Design [Jacobson 1994a, 1994b, 1994c, 1994d, 1995b]. In these

9.3 The Informal UML Method | 335

18 Don Norman discusses the relationship between designer and user models, which are closely related

to these perspectives [Norman 1986].

articles, he expands on some of the concepts and practicalities of use cases that were not

addressed in his book, such as the following.19

� The definition of a good use case. Jacobson notes that “a good use case when

instantiated is a sequence of transactions performed by a system, which yields a

measurable result of value for a particular actor” [Jacobson 1994a, p. 17].

� How and why use cases are created. Jacobson describes the observation of users

in the workplace by interface designers as a key source of use scenarios. He also

suggests that use-oriented design and usability testing are very important in

understanding the envisioning of the user interface [Jacobson 1994a, p. 17]. Un-

fortunately, neither of these suggestions has made its way into the common

object-oriented practice of generating use cases or into the description of use

cases in UML.

� The relationship between use cases and scenarios. The term “scenario” is used

by the object-oriented community to describe a particular instance of object

interaction (given specific states and events): “a specific sequence of actions that

illustrates behavior” [Booch et al. 1999, p. 466]. Jacobson observes that a use

case class can be modeled as a state machine, with use case instances represent-

ing a particular series of states. He describes use scenarios (in the object-

oriented sense) and use case instances as equivalent [Jacobson 1994a, p. 17].

Use cases influenced Grady Booch (although he adopted scenarios as an approxi-

mately equivalent technique [Booch 1994b, p. 3]). Use cases were incorporated into UML

when the Booch, Objectory, and OMT methods were combined [Booch et al. 1999]. How-

ever, none of the standard UML references [OMG 1999, Booch et al. 1999, Rumbaugh

et al. 1999] describes use cases in enough detail to allow consistent results, let alone pro-

vide guidance on user-centered design.

9.3.3 No Separation of User and Domain Models

The second problem I raised with respect to current object-oriented methods is the lack

of separation of user and domain models. In HCI, a user’s understanding of a system is

called the “user’s conceptual model” or sometimes just the “user model” or the “concep-

tual model.” Object-oriented approaches tend to ignore the user model and instead con-

centrate on a domain model, which is intended to represent how the organization or

336 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

19 Much of this material is also included in Jacobson [1995a].

system “really works.”20 Unfortunately, it is extremely rare for users to understand an

organization or system in this way. Figure 9.9 shows a user’s conceptual model of an ele-

vator. In contrast, Figure 9.10 is a corresponding domain model (although a somewhat

simplified one).

Because the user interface for an elevator is so simple, there is little chance that con-

fusing or unnecessary concepts or terms can “leak” from the domain model into the user

interface. However, this is a real problem for most software user interfaces.

Another substantial barrier to user-centered development from the domain model is

that user interface objects tend to be ignored in the early phases of design. They get “dis-

covered” in later, more detailed stages and a user interface materializes during implemen-

tation (see Section 9.3.4).

9.3.4 No Deliberate User Interface Design

The traditional software engineering view of user interface design is that it is an activity

that falls outside of its scope. For example, only one of the three undergraduate software

engineering textbooks on my shelf has as much as a single chapter devoted to user inter-

face design [Sommerville 1995]. Of the other two, one [Pressman 1997, pp. 409–422]

devotes only 24 of 885 pages to the subject, while the third, the most recent of the three

[Pfleeger 1998], makes only a few passing references to it. Consequently, in many proj-

ects user interfaces evolve as developers discover the need for user interaction. Concepts

9.3 The Informal UML Method | 337

FIGURE 9.9 User’s conceptual model of an elevator

Shows current location

Elevator

Door

Floor Selector

Floor Indicator

Call Button

External Floor
Indicator

Requests

Shows current location

Selects destination

Provides
access to

20 Editor’s note: the use of “domain model” diverges strongly from the use promoted in Chapter 10 and

other chapters, where the domain model is composed of users’ referents (including, where required,

business referents) and associations between these referents.

and terminology in the user interface come straight from the underlying software. I have

seen utterly unusable systems developed in this way.

9.3.5 Lack of Contextual Information

Whereas Fowler initially suggested, in his first edition, that use cases be based on interviews

with users [Fowler 1997, p. 44], this particular recommendation mysteriously disappeared

in the second edition [Fowler 2000]. This is a retrograde step for the development of user-

centered systems. User-centered design means understanding the real circumstances or con-

text of a system’s use. Sitting in a development office talking to other developers certainly

does not provide this. Talking to users is a step in the right direction, but watching and

working with users is the best way. (This may not be necessary in all cases, but software

development needs to move away from the situation in which developers have no idea

what is happening in the real world.)

338 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

FIGURE 9.10 Simplified domain model of an elevator

Call Button

External Floor
Indicator

Controller

Traveling Cable

Drive Machine Drive Sheave Governor

Counterweight Hoist Cable Safety Cable

Floor Selector

Floor Indicator

Door

CarShaft

Door OperatorGuide Rails

Limit Switch Buffer

Provides request signal to

Displays location from

Controls

Attached to

Connects to

Connects
to

Signals overspeed to

Operates

Gets
request

from

Displays
position

on

Note: Some of the objects (classes) shown in this diagram would be considered by many object-oriented designers to be
implementation objects and not part of the domain model. I am not certain that you could get agreement as to which.

9.3.6 No Usability Evaluation

Software testing takes many forms and is a science in its own right. Unfortunately,

usability evaluation is a completely separate science. Functional testing may prove that a

piece of software meets its specifications, but that does not make it suitable for real users

in the real world.

Informal usability testing is not difficult to conduct and requires no more than a

handful of users [Nielsen 1993, Nielsen and Landauer 1993]. It needs to be an integral

part of the design of any interactive system. Heuristic or expert evaluation of designs and

prototypes can provide an effective alternative in some cases.

9.4 A Unified Approach to Use Cases and Scenarios

Most of the changes required to make the informal UML method user-centered are rela-

tively straightforward. However, use cases are already part of UML and cannot be con-

sidered user-centered in their current form, thus requiring some modification. In

contrast, most user-centered design processes are based on scenarios, which are one of

the top ten user-centered techniques reported in the survey.

Since Jacobson’s introduction of use cases, debates have raged over whether they are

more appropriate for design than scenarios. Some authors have tried to avoid the issue

by calling them broadly equivalent concepts. However, my own view is that it is prefer-

able to separate the two concepts and to be clear about how they contribute to successful

user-centered design. Both are required.

In this section we will explore the enigmatic nature of use cases and examine the need

for them to be closely integrated with scenarios.

9.4.1 Goal-Based Use Cases

Use cases were not well understood by object-oriented developers in the early 1990s. Part

of the confusion arose over Jacobson’s lack of formality in defining them (a decision that

he later defended as being necessary to their success [Cockburn and Fowler 1998]), but

some confusion resulted from the tendency to adapt a good idea to the problem in hand.

As a result, the terms “scenario” and “use case” are treated as approximately equivalent

by many authors, while various sub-species of use cases have evolved.

In a two-part article, Alistair Cockburn [1997a, 1997b] described some of the varia-

tions he encountered in trying to adopt a coherent approach to use cases in object-

oriented systems development. In the first part, he shows the variations occurring along

the following four dimensions.

9.3 The Informal UML Method | 339

1. Purpose. Stories of use or requirements. This variation is a result of the confu-

sion surrounding the concepts of use cases and scenarios, as well as the need

to describe both existing and proposed systems. Scenarios are better suited to

describing stories of use because they describe specific instances. Use cases

describe classes of potential scenarios (use case instances) and so are more

appropriate for requirements.

2. Content. Formal, consistent prose, or contradicting. Formal use cases are typi-

cally written in a form of structured English, while consistent prose is informal

but self-consistent. Contradicting content is a likely consequence of describing

stories of use.

3. Multiplicity. One or multiple scenarios per use case. Some use cases are really

scenarios, because they describe only a specific use case instance.21

4. Structure. Unstructured, semiformal, or formal. This dimension may vary

with purpose and content or may vary independently.

These dimensions are taken from 18 different types of use cases that Cockburn

encountered. He identified <requirements, consistent prose, multiple scenarios, semifor-

mal> as the most useful instance of these dimensions, as well as being the most consistent

with Jacobson’s original intentions [Jacobson et al. 1992]. Some of the dimensions

occurred only in specific combinations. For example, contradicting content must be

avoided when describing requirements, but it is an inevitable consequence of document-

ing stories of actual use.

In the second part of the article, Cockburn introduces three levels at which use cases

can operate.

1. Scope. System or organization. Use cases can describe the behavior of a single

system or of a system of systems (an organization). This is also discussed by

Jacobson [1995b]. Organizational use cases are called business use cases in the

Unified Software Development Process, which is the successor to Objectory

[Jacobson et al. 1999].

2. Goal specificity. Summary goals, user goals, or sub-functions. User goals are

relevant to system scope use cases. Summary goals can exist at either system or

organization scope and are used to organize collections of user goals.

3. Interaction detail. Dialogue interface level or semantic interface level. The dia-

logue interface level describes the syntax interaction (in terms of button

340 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

21 Cockburn uses the term “scenario” in its object-oriented sense.

presses, key clicks, and so on) and should be avoided during requirements

gathering. The intent, but not the substance, of the interaction is provided by

the semantic interface level.

Most of these dimensions have legitimate applications in system design, but they pro-

vide a confusing selection of possibilities for user interface design. Organization scope is

useful for identifying actors and assigning roles, but if we assume that the business

processes have already been decided, system scope should be our main focus of attention.

The goal dimension provides similar choices. Summary goals allow a high-level view of sys-

tem interaction but are not necessarily useful in designing a user interface. Interface design

requires use cases to be presented at the user goal or, in moving further toward detailed

design, the sub-function level. Finally, the interaction level determines the amount of detail

provided in each use case. Cockburn makes the point that the dialogue level would be inap-

propriate for requirements analysis because it would commit designers to a specific inter-

face implementation far too early in the process. (He uses “move to the next field” as an

example of a dialogue interface description, whereas “enter address” represents a semantic

description.)

The complete set of use case dimensions and the values of interest in user inter-

face design are shown in Table 9.7. This combination of attributes gives us use cases

that are focused on user goals, excludes unnecessary detail, and is suitable as a state-

ment of requirements (rather than just a story of use). Because their interaction detail is

semantic, this particular variety of use case can be described as abstract (as opposed to

concrete).

9.4 A Unified Approach to Use Cases and Scenarios | 341

TABLE 9.7 Use Case Dimensions and Values for User Interface Design

Dimension Value

Purpose Requirements

Content Consistent prose

Multiplicity Multiple scenarios per use case

Structure Semiformal

Scope System

Goal specificity User goals

Interaction detail Semantic interface level

9.4.2 Scenarios Versus Use Cases

In user-centered design, scenarios usually describe a “rich picture”22 of interaction—that

is, they include not only the information passing through the interface but also a great

deal about the context. Scenarios might typically include the following.

� The user’s identity, background, experience, and working routine (this also

might appear separately in a user profile rather than in the scenario itself)

� Why the user is performing the task at all and why it is being done at this par-

ticular time

� The situation or environment in which the interaction is taking place

� Copies of documents used in the interaction and photographs or videos of inter-

actions, user artifacts, and equipment

Some of this might seem mildly absurd for the average office interaction, but it becomes

very relevant in factories, warehouses, shop floors, farms, and so on. In fact, as comput-

ing becomes more pervasive, scenarios become more important.

Because scenarios are stories of use, what they give us that use cases do not is con-

text—the “who, where, when, and why” of an interaction. As we extract23 context and

generalize the scenarios, we are in effect translating them into use cases, as shown in Fig-

ure 9.11.

342 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

FIGURE 9.11 Relationship between scenarios and use cases

Purpose: stories of use
Content: contradicting
Multiplicity: one
Structure: unstructured

Purpose: requirements
Content: formal
Multiplicity: multiple
Structure: formal

Scenarios

Concrete use cases

Abstract use cases

22 I use the term “rich picture” to mean a broad, multi-faceted view. A rich picture is also a specific tech-

nique frequently used in conjunction with scenarios (see [Monk and Howard 1998]). Rich pictures in

this latter sense originate from Soft Systems Methodology (SSM) described in [Checkland 1981] and

[Checkland and Scholes 1990].

23 Notice that I say “extract,” not “discard.” Context is retained as part of the non-functional require-

ments of design, as we will see in Section 9.4.5.

9.4 A Unified Approach to Use Cases and Scenarios | 343

TABLE 9.8 Context of Use from the ISO Standard for Human-Centered Design

Context Attributes

Tasks Goals of use of the system, frequency and duration of perfor-
mance, health and safety considerations, allocation of activities,
and operational steps between human and technological
resources. Tasks should not be described solely in terms of the
functions or features provided by a product or system.

Users (for each different type or role) Knowledge, skill, experience, education, training, physical attrib-
utes, habits, preferences, capabilities.

Environments Social and cultural environment, ambient environment, legisla-
tive environment, technical environment, hardware, software,
materials, physical and social environments, relevant standards.

24 See Chapter 8 for further discussion of the ISO standard.

FIGURE 9.12 Relationships among contexts

Task EnvironmentRole User

performed
in

taken
by

within
an

1..* 1..* 1..* 1..* 1..* 1..*

9.4.3 Context of Use

Entire books have been written about the importance of context in designing interactive

systems (see [Beyer and Holtzblatt 1998]). For our purposes, the ISO standard human-
centered design processes for interactive systems [ISO 1999] will suffice. It identifies the

first step in human-centered design as understanding and specifying the context of use.24

The attributes suggested are shown in Table 9.8 (they are not intended to be exhaustive).

It is useful to split the user context into two parts—user type and role—and then con-

sider the relationships among all four contexts, as shown in Figure 9.12. This figure

shows that every task is performed in a role taken by a user within an environment. Each

of these contexts could have a significant impact on the design of an appropriate user

interface. As a result, we are faced with a potentially large number of permutations. Even

for a small system, there may be two environments (for example, an office and a cus-

tomer site), three types of users (an administrative assistant, a sales expert, and man-

ager), and six roles (telephone sales, external sales, and so on). Thus, there can be as

many as 36 potential variations per task, although the set of realistic combinations is

usually much smaller because not all tasks are performed by all roles taken by all users.

9.4.4 Essential Use Cases

Clearly, tasks must be described individually, but a single description is unlikely to be

appropriate for all permutations of context. One approach is to factor the user and envi-

ronment contexts into the role description. This is the solution adopted by Constantine

and Lockwood [1999] for their “essential” use cases. It involves providing a separate

role for each significant permutation of role, user, and environment and then naming the

resulting user role with a descriptive phrase rather than a simple noun. Compare, for

example, the role “Customer” with the user roles “Casual Customer,” “Web Customer,”

and “Telephone Customer.” Constantine and Lockwood include details of the role itself

plus details of its users (referred to as role incumbents) and the environment in each user

role description.

The use cases described in UML (little changed from Jacobson’s original) are not as

straightforward in this respect [Jacobson et al. 1992, Booch et al. 1999]. An actor plays

a set of roles, but the roles are not usually described and no mention is made of context

or environment. However, this extremely vague state of affairs means that a more user-

centered approach, along the lines of essential use cases, is certainly not precluded.

9.4.5 Use Cases as Requirements

It is always tempting to describe requirements analysis as the “what” of software devel-

opment, with later technical design as the “how.” But, as usual, such a simplistic view

obscures some important complications. In this case, one complication is that it is almost

impossible to say what a system must do without some indication of how it should do it

[Davis 1991, Wirfs-Brock 1993]. In other words, we want to describe the proposed behav-
ior of a system at a suitable level.25 In fact, this was Jacobson’s original intention for use

cases [Jacobson 1987, p. 185].

For interactive systems, we want to arrive at this description of behavior in a way that

takes account of its contexts of use. Object-oriented developers are already familiar with

the process of starting with a scenario and discarding unnecessary information to arrive at

a use case. In the process, however, they discard context. A user-centered approach to this

problem is shown in Figure 9.13.

Details of context are extracted from the scenarios and documented separately (as

required by the ISO standard [ISO 1999, Section 8.2.2]). The resulting analysis use cases

344 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

25 Even in their most abstract form, use cases describe behavior and therefore include some element of

implementation detail. The goal in applying use cases to requirements is to exclude inappropriate

implementations while allowing designers suitable freedom to innovate.

(or “analysis cases,” which is a lot easier to say) are generalized to produce abstract use

cases. Being abstract, these use cases describe a whole universe of potential design solu-

tions. Appropriate designs are then synthesized with the help of the contexts of use as

well as other non-functional requirements (such as hardware and software platforms or

networking constraints). The result is a more concrete version of the abstract use case,

which is shown in Figure 9.13 as a design use case or, more simply, “design case.” Design

cases can be tested by considering specific scenarios, first just in concept, but later as low-

fidelity prototypes tested with potential users.

Successful designs are specified in sufficient detail for implementation, with the design

cases becoming yet more concrete in the form of test cases.26 These provide the specific

details necessary for functional testing once implementation and unit testing have taken

place.

Notice that the approach shown in Figure 9.13 involves starting with concrete infor-

mation in the form of scenarios, moving to a more general abstract form, and then

returning to a concrete design that takes all of the required factors into consideration.

This alternation between concrete and abstract is a standard approach to problem solv-

ing [Polya 1990] known as the generalize-specialize cycle (see Figure 9.14).

9.4 A Unified Approach to Use Cases and Scenarios | 345

FIGURE 9.13 Relationships among scenarios, use cases, and contexts of use

2 Distill
Essential
Require-
ments

1 Discover
Contexts
of Use

3 Propose
Design
Solution

4 Low-Fidelity
Prototyping

abstract use case
(functional requirements)

scenarios

concrete use case
(analysis case)

other non-functional
requirements

contexts of use
(non-functional
requirements)

concrete use case
(design case)

unsuccessful
analysis case
and feedback

specification

unsuccessful
design case

and feedback

m
or

e
ab

st
ra

ct
m

ore concrete

test case

26 It is not possible to test abstract use cases directly. The test cases take account of a specific design and

provide the quality assurance team with the concrete information needed to conduct functional tests.

9.5 A User-Centered UML Method

The ISO 13407 human-centered design standard (mentioned in Section 9.4.3) identifies

four activities that should take place during system development.

1. Understand and specify the context of use.

2. Specify the user and organizational requirements.

3. Produce design solutions.

4. Evaluate designs against requirements.

So that we are not just arbitrarily adding user-centered techniques to UML, it is useful

to make the resultant informal method comply with the ISO 13407 standard. In this

section, we will incorporate the “top ten” user-centered methods (from Section 9.2.2) as

required to meet the ISO 13407 standard, modify the informal UML method wherever

needed (to meet the standard), and describe how the existing UML notation can be

applied to user-centered design.

9.5.1 Incorporating the User-Centered Top Ten

Listed below are the ten most popular user-centered techniques from Section 9.2.2.

Next to each technique I have indicated whether the technique is necessary in order

to satisfy the ISO 13407 standard or to address other shortcomings of the current

UML method.

346 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

FIGURE 9.14 Generalize-specialize cycle in problem solving

3 Test

abstract
requirements

2 Specialize

1 Generalize
concrete
problem

concrete
solution

non-viable
solution

and feedback

non-viable
solution

and feedback

viable
solution

1. Informal usability testing. Required in evaluating designs against user

requirements.

2. User analysis/profiling. Required as part of understanding and specifying the

contexts of use.

3. Evaluate existing system. Required as part of understanding and specifying

the contexts of use.

4. Low-fidelity prototyping. Required in order to produce design solutions and

to evaluate designs against requirements.

5. Expert (heuristic) usability evaluation. Not absolutely essential, but a cost-

effective alternative to usability testing in some cases.

6. Task identification. Required as part of understanding and specifying the con-

texts of use.

7. Navigation design. Required in order to produce appropriate design solutions

and as part of deliberate user interface design.

8. Scenarios of use. Required as part of understanding and specifying the con-

texts of use.

9. Set usability requirements. Required in evaluating designs against user

requirements.

10. Visual interface design. Required in order to produce appropriate design

solutions and as part of deliberate user interface design.

In my view, only expert usability evaluation is optional. However, I have still included

it in the user-centered UML method because it is a very effective alternative to usability

testing (although it cannot entirely replace usability testing). The next step is to group the

techniques into activities, as shown in Table 9.9.

The activities are shown in bold italics as part of a user-centered UML method in Fig-

ure 9.15.

9.5.2 Modifying UML for User-Centered Design

Aside from the new activities previously described, the following changes in the informal

UML method are needed for user-centered design.

� Abstract use cases. The design process needs to be based on abstract use cases as

statements of requirements (see Section 9.4). They will be syntax-free, contain

no premature design decisions, and be based entirely on a user’s view of an

interaction. Constantine and Lockwood’s essential use cases meet these condi-

tions and also have a structured format [Constantine and Lockwood 1999].

9.5 A User-Centered UML Method | 347

� User model. A user’s conceptual model is similar to a domain model, but en-

tirely from a user’s perspective (see Section 9.3.3). Identification of objects and

relationships from the original UML method needs to produce a user model as

its initial deliverable, with a conceptual class diagram being produced during

user interface design. All concepts and terminology that will appear in the user

interface must be consistent with the user model.

These modifications, in combination with the user-centered activities previously pro-

posed, will shift the focus of UML-based software development from system-centered to

user-centered.

348 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

TABLE 9.9 Top Ten User-Centered Techniques Organized as Activities

Techniques Activity Description

Scenarios of use Capture/develop scenarios Observe and interview users in situ,
Evaluate existing document scenarios, and take
system photographs, videos, and copies of user

artifacts.

The scenarios artifact could be just narra-
tives in the simplest case.

User analysis/profiling Contextual analysis Identify and describe all aspects of con-
Task identification text: tasks, users, and environments (see
Set usability requirements Section 9.4.3).

Navigation design Interface design Define user’s conceptual model; design
Visual interface design visual appearance and navigation. Use
Low-fidelity prototyping low-fidelity prototyping to test designs

with users.

The interface design models artifact will
consist of state charts (for navigation), low-
fidelity prototypes, and other UML models
for full description of user interaction (such
as activity diagrams).

In addition, as user interface design pro-
gresses, new classes will be identified so
that the conceptual class diagram (domain
model) is produced in parallel.

Expert usability evaluation Usability evaluation Evaluate usability before, during, and
Information usability testing after implementation. Some usability test-

ing must be done, but expert usability
evaluation can be an effective adjunct.

9.5.3 Applying UML Notation to User-Centered Design

The remainder of this section considers how existing UML notation can be used

unchanged in user-centered design. One reason for this is that actors may appear where

objects (classes) are shown. It is entirely a matter of preference whether actors are shown

with the stick-figure representation or as rectangles.

9.5 A User-Centered UML Method | 349

FIGURE 9.15 User-centered UML method

Capture/Develop
Scenarios

Contextual
Analysis

Find Actors and
Use Cases

Identify Objects
and Relationships

Interface
Design

Interaction
Diagrams from

Use Cases

Identify
Operations

Scenarios Contexts of Use

Use Case Model User Model

Class Diagram
(Conceptual)

Interaction
Diagrams

Class Diagram
(Specification)

Examine
Dependencies and
Class Relationships

Specify
Implementation

Implementation Functional
Testing

Package
Diagrams

Class Diagram
(Implementation)

Code Test ResultsUsability
Evaluation

Usabilty Reports

All activities are
performed iteratively.

Usability evaluation
is conducted in
parallel with design
and implementation.

9.5.3.1 Class and Domain Models

Class diagrams document the static relationships between all objects of their defining

classes. Their most useful application in the early stages of user interface design is in the

production of a user model (user’s conceptual model). This is very similar to the domain

model described by Fowler [2000], but it is produced entirely from a user’s perspective.

An example is shown in Figure 9.16.

The user model contains classes that are important from a user’s perspective of a sys-

tem. Some of these classes may not be realized in the detailed design of the system. For

example, tickets and boarding cards are important from a user’s perspective, but they are

simply pieces of paper. They do not necessarily warrant their own classes when the soft-

ware implementation is considered.

9.5.3.2 Sequence Diagrams

Sequence diagrams have a column showing a “lifeline” for each object involved in the

interaction [Fowler 2000]. Early in the design process, the sequence diagrams would

reflect the user model and abstract use cases, as shown in Figure 9.17.

9.5.3.3 Collaboration Diagrams

A collaboration diagram contains the same information as a sequence diagram, but it is

presented so that the messages making up the interaction annotate the connecting lines

(see Figure 9.18). The overall effect makes it more difficult to see the sequence of mes-

sages (which are now numbered) but shows the relationships between objects more

clearly.

350 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

FIGURE 9.16 Simple domain model for passenger check-in (carry-on luggage only)

SeatPreference

Passenger

Ticket

BoardingCard

SeatAllocation

Presents

Provides

Receives

Reserves (optional)

Determines

Represents

9.5.3.4 State Diagrams

UML’s state diagrams are based on state charts used in real-time software engineering [Harel

1987]. Because a user interface can be viewed as a state machine, state diagrams are very

appropriate for describing detailed interaction graphically. Perspective is still important,

however, so that design decisions will not be taken prematurely. Figure 9.19 shows a simple

9.5 A User-Centered UML Method | 351

FIGURE 9.17 Sequence diagram for domestic check-in (carry-on luggage only)

: Passenger : Check-In Clerk

: Check-In
System

PresentTickets
EnterTicketID

RequestSeatPreferences

RequestSeatPreferences

ProvideSeatPreferences

ProvideSeatPreferences

MakeSeatAllocation

ProvideBoardingCards

ProvideBoardingCards

FIGURE 9.18 Collaboration diagram for domestic check-in (carry-on luggage only)

: Passenger : Check-
In Clerk

: Check-In
System

7: MakeSeatAllocation

1: PresentTicket(s)
5: ProvideSeatPreferences

2: EnterTicketID
6: ProvideSeatPreferences

4: RequestSeatPreferences
8: ProvideBoardingCard(s)

3: RequestSeatPreference(s)
7: ProvideBoardingCard(s)

state diagram for the check-in example. This diagram has an essential perspective and

includes only conceptual objects from the domain model shown in Figure 9.16. A specifica-

tion perspective would include more detail and would be written with a specific interface

design in mind. For example, a specification perspective diagram would show both provi-

sional and final seat allocation activities nested within the appropriate states. While these are

not important to the conceptual operation of the user interface, they are very important to

its detailed operation. The implementation perspective would add detail relevant to the cho-

sen interface platform (for example, Microsoft Windows, Java AWT, and so on).

9.5.3.5 Activity Diagrams

Activity diagrams combine the features of state charts, flowcharts, and dataflow diagrams

(see Yourdon [1989] for descriptions of the latter two types of diagrams). They are activ-

ity based, and in their simplest form they resemble a state diagram. However, activity dia-

grams allow states to be associated with objects by placing states in appropriate columns

(called “swimlanes”). Their resemblance to dataflow diagrams comes from the inclusion

of an “object flow” notation that connects activities to the objects affected by them. A

slightly contrived example is shown in Figure 9.20 (its use is not really warranted in such

352 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

FIGURE 9.20 Simple activity diagram for the Print Boarding Card(s) activity

Print Boarding Card(s)

Print Again

Ticket Printer

: Boarding Card(s)

FIGURE 9.19 State diagram for Check-In System class (carry-on luggage only)

Print Boarding Card(s)

Print Again

Next

Back

Done

Print OK

Display Seat Allocation(s)Obtain Ticket ID and Preferences

a simple case). In this example, the Print Boarding Card(s) activity is in the Ticket Printer

“lane” and is therefore a state of a Ticket Printer object. The result of the activity is one or

more objects of the Boarding Card class.

Because of their structure, activity diagrams are very suitable for modeling workflows.

9.6 Comparisons with Other Use Case-Driven Methods

Attentive readers will recall that use cases were introduced by Ivar Jacobson as part of

his Objectory process [Jacobson 1987, Jacobson et al. 1992]. When Jacobson joined

Rational Software, Objectory was developed into the Rational Objectory Process and

then the Rational Unified Process (RUP).27

RUP [Kruchten, 1999] and usage-centered design [Constantine and Lockwood 1999]

are software development approaches that describe themselves as use case-driven. Here

we briefly compare them with user-centered modifications to the informal UML process,

as described in this chapter (UCUML). UCUML is also use case-driven in that abstract

use cases describe the desired behavior for the system under design.

9.6.1 Rational Unified Process

RUP is now a proprietary process framework sold by Rational as a Web-based CD-

ROM. It is an extremely comprehensive process but does not claim to be user-centered. I

have worked briefly with Rational to introduce user-centered design to RUP. Part of this

effort was a very educational process for me, as I had not previously worked with such a

large process. I discovered that it is possible to do user-centered design with RUP, but

that developers would need quite a bit of guidance to do so. Some of this guidance

appears in the new user-centered design concepts document included as part of the most

recent edition of the product, RUP 2000 [Rational 2000].

The following list shows some interesting parallels between RUP and UCUML.

� RUP has a deliberate user interface design activity. This is (described by

Kruchten in Chapter 5).

� User interface design in RUP starts with a “use case storyboard” that describes

interactions at a high level (see “Guidelines: Use-Case Storyboard” in [Rational

2000]). These interactions are similar to abstract use cases.

� Primitive boundary classes represent users’ conceptual objects as they appear

in the user interface. While they are not organized into a single model, they

9.6 Comparisons with Other Use Case-Driven Methods | 353

27 For the history and general approach of this process including details of the Unified Software Devel-

opment Process (RUP), see [Jacobson et al. 1999].

are the same objects that would appear in the user model suggested for

UCUML.

� Contexts of use are established, but across a number of activities and artifacts,

as shown in Table 9.10.

The differences between RUP and UCUML are as follows.

� RUP does not distinguish between domain and user models.

� Use cases in RUP are vaguely defined (except for the advice given as part of user

interface design). Scenarios are viewed only as instances of use cases.

354 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

TABLE 9.10 Contexts of Use in RUP 2000 (from [Rational 2000], used with permission)

Context RUP Artifact

Environments High-level:

� Business Vision [Section: Customer Environment]

� Stakeholder Requests

� Vision [Section: User Environment]

Users High-level:

� Business Vision [Section: Customer Profiles]

� Stakeholder Requests

� Vision [Section: User Profiles]

Roles High-level:

� Business Actor (external users)

� Business Worker (internal users)

Detailed:

� Actor

Tasks High-level:

� Stakeholder Requests

� Vision [Section: Product Features]

Detailed:

� Use-Case Storyboard

� Use Case

� Usability evaluation is presented only as part of user interface prototyping. It is

not considered to be part of overall system testing.

� RUP is an elaborate and very detailed process for software construction from

beginning to end. By contrast, UCUML is a lightweight approach that gives

only the general flavor of how user-centered software development should be

done.

In reality, it is unlikely that an organization would be considering the extremes of a full-

blown process such as RUP and a lightweight method such as UCUML. However, usage-

centered design might provide a viable compromise for those in search of detailed guidance.

9.6.2 Usage-Centered Design

Usage-centered design [Constantine and Lockwood 1999] is described briefly in Section

9.2.4.5. Unlike RUP, usage-centered design does have a user-centered philosophy. Conse-

quently, it has a number of points in common with the other user-centered processes con-

sidered in this chapter.

Features common to both usage-centered design and UCUML are as follows.

� Abstract use cases. Constantine and Lockwood refer to their particular form of

abstract use cases as essential use cases (described in Section 9.4.4).

� Deliberate user interface design. Usage-centered design includes an interface

content modeling activity that concerns itself with both navigation and content.

The implementation modeling activity deals with visual design.

� Usability evaluation. Expert evaluations and usability testing are both included

in usage-centered design.

The main differences in approach center around scenarios and contexts of use.

� Scenarios. Constantine and Lockwood do not value scenarios during analysis

and design. They appear to be concerned that scenarios contain too much

extraneous information [Constantine and Lockwood 1999, p. 106].

� Contexts of use. Usage-centered design does not directly address the issues of

contexts of use as presented in the ISO 13407 standard (see Section 9.4.3). Con-

fusingly, Constantine and Lockwood use the term “context” both in the sense

that I have used it in this chapter and as the state that the user interface is in at a

particular moment of interaction. Contextual inquiry [Beyer and Holtzblatt

1998] is mentioned but is not directly drawn into the method.

9.6 Comparisons with Other Use Case-Driven Methods | 355

However, to be fair to usage-centered design, it is a complete method whereas

UCUML is a skeletal approach. In addition, Constantine and Lockwood’s description of

their method [Constantine and Lockwood 1999] includes a large amount of information

and advice on user interface and user-centered design. This provides developers with

most of what is necessary to design user-centered systems, if only they can be persuaded

to leave the mainstream approaches behind.

9.7 Conclusions

9.7.1 The Benefits

At the beginning of this chapter, I suggested that the benefits resulting from a con-

vergence of UML and user-centered design would be similar to those derived from the

widespread adoption of UML itself. Each of the following benefits applies to this

convergence.

� Increased awareness of user-centered issues among developers. Developers do

not set out to create unusable systems. It is naïveté rather than malice that

leads to the usability problems with which we are all too familiar. Making user-

centered design an integral part of the software development process is prob-

ably the most practical way of overcoming the current lack of awareness.

� Better communication between designers and developers. This benefit applies

as much to user interface designers as it does to system designers. Conflicts fre-

quently arise during development when there are differing goals. A common

vision of how scenarios and use cases are captured and developed, a common

notation in expressing a variety of design models, and a common understanding

of usability evaluation would prevent some of these conflicts.

� Skills are more readily transferred between projects. If user-centered design

became part of “mainstream” software development for interactive systems,

there would be less difficulty in hiring and educating staff. Developers leaving

one environment would not need to be retrained for another employer or pro-

ject using alternative techniques or methods.

� Improved development support from software tools. User-centered methods

currently have little support through software tools in comparison with UML.

Adopting common notations (where possible) and incorporating user-centered

techniques into UML would significantly improve this situation.

356 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

9.7.2 The Challenges

Still, combining user-centered design with UML raises a number of issues.

� Lack of skills. Although the transfer of skills between projects will eventually be

an advantage to a unified approach, initially there will be a shortage. This will

be particularly true for small projects in which developers will be expected to

perform various roles, including those of a usability practitioner.

� Lack of specialization. Some members of the HCI community argue that usabil-

ity and user interface design activities must be performed by specialists. While

this is certainly true in complex cases, I have seen projects that would have bene-

fited from any application of user-centered principles. In addition, greater aware-

ness of user-centered design is likely to lead to greater involvement of usability

practitioners in situations that require it, either in the direct performance of user-

centered design activities or as facilitators, mentors, and educators.

� False security. Part of the argument over specialization is whether organizations

would be deluding themselves that they were being user-centered when they

were simply applying a few user-centered techniques badly. However, with dis-

parate goals among members of the development team, pressing deadlines, and

unenlightened management, we have pretty much the same result on many pro-

jects already. User interface designers fail to persuade developers to implement

user-centered designs, contextual analysis is abandoned as having a detrimental

effect on schedules, and usability tests are ignored for myriad reasons. Getting

the entire development team pulling together in the same direction would

reduce the acceptability of user-centered shortsightedness.

� Lack of aptitude. To make a long story short, the traditional wisdom is that

user-centered design requires people skills, and software development requires

engineering skills. We see developers who find it hard to accept that user-

centered design is important, and we assume that this occurs because they do

not have an aptitude for user-centered design. However, since most developers

have not been taught user-centered design as an integral part of software engi-

neering courses, it is hardly surprising that they view user-centered design activ-

ities as eccentric and not really relevant to them. Some developers may become

very proficient at user-centered design, whereas others may not.

� Lack of separation. There is a view that in an ideal world, user-centered design

would take place without the possibility of “contamination” from the software

development process. Separate team members, tools, and notations would

reduce the possibility of implementation concepts “leaking” into the user inter-

face. At best, this argument is unrealistic in comparison with everyday practice.

9.7 Conclusions | 357

In most cases, user-centered design is not being done at all, and the user inter-

face concepts are the implementation concepts with a few alterations where

sufficient complaints have been received from users.

� Conflicts of interest. Very few of us have the luxury of being single-minded in

purpose. Deadlines, costs, resources, scheduling, and the status quo all conspire

to make design decisions much more complex than we would like them to be.

As both a developer and a user-centered designer, I frequently find myself hav-

ing to weigh the usability of the design against the difficulty of its implementa-

tion. Is this a bad thing? I think not, for the following reasons:

� It is a well-informed deliberation. I cannot hide from or overlook important

issues in the hope of swaying the decision one way or another.

� I own the problem. I cannot dismiss one side of the argument or the other just

because it falls outside my area of concern.

� I understand the impact of poor usability. Because I work with users, I

empathize with their problems. Since I understand that software does not have

to be inherently difficult to use, I have a low tolerance for design decisions that

result in poor usability.

Am I uniquely gifted in being able to work both as a usability practitioner and as a devel-

oper? I seriously doubt it. All that it requires is an acceptance that users and user-cen-

tered design are important to the development of usable software.

9.7.3 The Future

This chapter has not been about introducing a new method for user-centered design that can

be placed on the bookshelf and forgotten. I have proposed the convergence of user-centered

design with UML—perhaps the most popular development technology ever known to the

software industry. Just as UML has become the de facto standard for object-oriented devel-

opment, UCUML needs to become the de facto standard for interactive systems. This might

be achieved in part by the development of an extension of UML in the same way that real-

time variations [Douglas 1999] and Web variations [Conallen 2000] of UML have arisen.

User-centered design needs to be adopted and taught as an integral part of interactive

software development. It must not continue to be a specialized activity unknown to the

majority of the software industry.

Finally, I encourage anyone working in a UML-based interactive development envi-

ronment to try to incorporate some of the ideas presented here. This needs to be done not

only by introducing user-centered techniques but also by trying to make the entire devel-

opment philosophy user-centered. Please let me know of your successes or failures.

358 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

9.8 References

[Berry et al. 1997] D. Berry, S. Isensee, and D. Roberts. Designing for the User with OVID: Bridg-

ing User Interface Design and Software Engineering. Found at the IBM Corporation Web site,

at http://www.ibm.com/ibm/hci/guidelines/design/ovida.html.

[Beyer and Holtzblatt 1998] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-

Centered Systems. San Francisco: Morgan Kaufmann, 1998.

[Booch 1994a] G. Booch. Object-Oriented Analysis and Design with Applications. Redwood City,

CA: Benjamin/Cummings, 1994.

[Booch 1994b] G. Booch. The Booch Method: Scenarios. Report on Object-Oriented Analysis and

Design, 1 (3), 1994, 3–6.

[Booch et al. 1999] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language

User Guide. Reading, MA: Addison-Wesley, 1999.

[Browne 1993] D. Browne. STUDIO: STructured User-Interface Design for Interaction Optimisa-

tion. New York: Prentice Hall, 1993.

[Carroll 1995] J. M. Carroll, ed. Scenario-Based Design: Envisioning Work and Technology in

System Development. New York: John Wiley and Sons, 1995.

[Checkland 1981] P. Checkland. Systems Thinking, Systems Practice. Chichester: John Wiley and

Sons, 1981.

[Checkland and Scholes 1990] P. Checkland and J. Scholes, Soft Systems Methodology in Practice.

Chichester: John Wiley and Sons, 1990.

[Cockburn 1997a] A. Cockburn. Goals and Use Cases. JOOP, 10 (6), 1997, 35–40.

[Cockburn 1997b] A. Cockburn. Using Goal-Based Use Cases. JOOP, 10 (7), 1997, 56–62.

[Cockburn and Fowler 1998] A. Cockburn and M. Fowler. Question Time! About Use Cases, Pro-

ceedings of the OOPSLA Conference. New York: ACM, 1998, 226–243.

[Conallen 2000] J. Conallen. Building Web Applications with UML. Reading, MA: Addison-

Wesley, 2000.

[Constantine 1994] L. L. Constantine. Essentially Speaking. Software Development, 2 (11), 1994,

95–96.

[Constantine 1995] L. L. Constantine. Essential Modeling. Interactions, 2 (2), 1995, 34–46.

[Constantine and Lockwood 1999] L. L. Constantine and L. A. D. Lockwood. Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered Design. New York: ACM

Press, 1999.

[Cook and Daniels 1995] S. Cook and J. Daniels. Designing Object Systems: Object-Oriented

Modelling with Syntropy. New York: Prentice Hall, 1994.

[Cooper 1999] A. Cooper. The Inmates Are Running the Asylum. Indianapolis: SAMS Publishing,

1999.

[Davis 1991] A. M. Davis. Software Requirements Analysis and Specification. Englewood Cliffs,

NJ: Prentice Hall, 1991.

[Douglas 1999] B. P. Douglas. Real-Time UML: Developing Efficient Objects for Embedded Sys-

tems, 2nd Ed. Reading, MA: Addison-Wesley, 1999.

9.8 References | 359

[Draper and Norman 1986] S. W. Draper and D. Norman, eds. User Centered System Design.

Hillsdale, NJ: Lawrence Erlbaum Associates, 1986.

[Fleming 1998] J. Fleming. Web Navigation: Designing the User Experience. Sebastopol, CA:

O’Reilly and Associates, 1998.

[Fowler 1997] M. Fowler. UML Distilled: Applying the Standard Object Modeling Language.

Reading, MA: Addison-Wesley, 1997.

[Fowler 2000] M. Fowler. UML Distilled: Applying the Standard Object Modeling Language. 2nd

Ed., Reading, MA: Addison-Wesley, 2000.

[Graham 1997] I. Graham. Some Problems with Use Cases . . . and How to Avoid Them. In

D. Patel, Y. Sun, and S. Patel, eds. Oois ’96: 1996 International Conference on Object Ori-

ented Information Systems. London: Springer, 1997, 18–27.

[Graham et al. 1997] I. Graham, B. Henderson-Sellers, and H. Younessi. The OPEN Process Spec-

ification. Harlow, England: Addison-Wesley, 1997.

[Hackos and Redish 1998] J. T. Hackos and J. C. Redish. User and Task Analysis for Interface

Design. New York: Wiley and Sons, 1998.

[Harel 1987] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-

puter Programming, 8 (3), 1987, 231–274.

[ISO 1999] International Standardization Organization. ISO 13407. Human-Centred Design

Processes for Interactive Systems. Geneva, Switzerland: ISO, 1999.

[Jacobson 1987] I. Jacobson. Object Oriented Development in an Industrial Environment. In Pro-

ceedings of the OOPSLA ’87 Conference, New York: ACM, 1987, 183–191.

[Jacobson 1994a] I. Jacobson. Basic Use-Case Modeling. Report on Object-Oriented Analysis and

Design, 1 (2), 1994, 15–19.

[Jacobson 1994b] I. Jacobson. Basic Use-Case Modeling (Continued). Report on Object-Oriented

Analysis and Design, 1 (3), 1994, 7–9.

[Jacobson 1994c] I. Jacobson. Toward Mature Object Technology. Report on Object-Oriented

Analysis and Design, 1 (1), 1994, 36–39.

[Jacobson 1994d] I. Jacobson. Use Cases and Objects. Report on Object-Oriented Analysis and

Design, 1 (4), 1994, 8–10.

[Jacobson 1995a] I. Jacobson. The Use-Case Construct in Object-Oriented Software Engineering.

In J. M. Carroll, ed. Scenario-Based Design. New York: John Wiley and Sons, 1995, 309–336.

[Jacobson 1995b] I. Jacobson. Use Cases in Large-Scale Systems. Report on Object-Oriented

Analysis and Design, 1 (6), 1995, 9–12.

[Jacobson et al. 1992] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-

Oriented Software Engineering: A Use Case Driven Approach. Reading, MA: ACM Press,

1992.

[Jacobson et al. 1999] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Develop-

ment Process. Reading, MA: Addison-Wesley, 1999.

[Kreitzberg 1999] C. Kreitzberg. The LUCID Design Framework. Found at the Cognetics Corpo-

ration Web site, at http://www.cognetics.com/lucid/lucid2aoverview.pdf.

[Kruchten 1999] P. Kruchten. The Rational Unified Process—An Introduction. Reading, MA:

Addison-Wesley, 1999.

360 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

[Mayhew 1992] D. J. Mayhew. Principles and Guidelines in Software User Interface Design.

Englewood Cliffs, NJ: Prentice Hall, 1992.

[Mayhew 1999] D. J. Mayhew. The Usability Engineering Lifecycle: A Practitioner’s Handbook

for User Interface Design. San Francisco: Morgan Kaufmann, 1999.

[Monk and Howard 1998] A. Monk and S. Howard. Methods & Tools: The Rich Picture. Interac-

tions, March and April, 1998, 21–30.

[Nielsen 1993] J. Nielsen. Usability Engineering. San Diego: Academic Press, 1993.

[Nielsen 1995] J. Nielsen. Scenarios in Discount Usability Engineering. In J. M. Carroll, ed.

Scenario-Based Design. New York: John Wiley and Sons, 1995, 59–84.

[Nielsen and Landauer 1993] J. Nielsen and T. K. Landauer. A Mathematical Model of the Finding

of Usability Problems. Proceedings of ACM INTERCHI ’93, (Amsterdam, The Netherlands),

New York: ACM, 1993, 206–213.

[Nielsen and Mack 1994] J. Nielsen and R. L. Mack. Usability Inspection Methods. New York:

John Wiley and Sons, 1994.

[Norman 1986] D. Norman. Cognitive Engineering. In D. Norman and S. W. Draper, eds. User

Centered System Design. Hillsdale, NJ: Lawrence Erlbaum Associates, 1986, 31–71.

[Olson and Moran 1995] J. Olson and T. Moran. Mapping the Method Muddle: Guidance in Using

Methods for User Interface Design. In M. Rudisill, C. Lewis, P. Polson, and T. McKay, eds.

Human-Computer Interface Design: Success Cases, Emerging Methods and Real-World Con-

text. San Francisco: Morgan Kaufmann, 1995.

[OMG 1999] Object Management Group. OMG Unified Modeling Language Specification. Ver-

sion 1.3, Needham, MA: OMG, 1999. Found at http://www.omg.org.

[Pfleeger 1998] S. L. Pfleeger. Software Engineering: Theory and Practice. Upper Saddle River, NJ:

Prentice Hall, 1998.

[Polya 1990] G. Polya. How to Solve It: A New Aspect of Mathematical Method. 2nd Ed., Lon-

don: Penguin Books, 1990.

[Pressman 1997] R. Pressman. Software Engineering: A Practitioner’s Approach. 4th Ed., New

York: McGraw-Hill, 1997.

[Rational 2000] Rational Software Corporation. Rational Unified Process 2000. Cupertino, CA:

Rational Software Corporation, 2000.

[Redmond-Pyle and Moore 1995] D. Redmond-Pyle and A. Moore. Graphical User Interface

Design and Evaluation. London: Prentice Hall, 1995.

[Roberts et al. 1998] D. Roberts, D. Berry, S. Isensee, and J. Mullaly. Designing for the User with

OVID: Bridging User Interface Design and Software Engineering. Indianapolis: Macmillan

Technical Publishing, 1998.

[Rouse 1991] W. B. Rouse. Design for Success. New York: John Wiley and Sons, 1991.

[Rumbaugh et al. 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

[Rumbaugh et al. 1999] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-

guage Reference Manual. Reading, MA: Addison-Wesley, 1999.

[Schneiderman 1998] B. Schneiderman. Designing the User Interface, 3rd Ed. Reading, MA:

Addison-Wesley, 1998.

9.8 References | 361

[Sommerville 1995] I. Sommerville. Software Engineering, 5th Ed. Harlow, England: Addison-

Wesley, 1995.

[Tognazzini 1992] B. Tognazzini. Tog on Interface. Reading, MA: Addison-Wesley, 1992.

[Wieringa 1998] R. Wieringa. A Survey of Structured and Object-Oriented Software Specification

Methods and Techniques. ACM Computing Surveys, 30 (4), 1998, 459–528.

[Wirfs-Brock 1993] R. Wirfs-Brock. Designing Scenarios: Making the Case for a Use Case Frame-

work. Smalltalk Report, November–December, 1993, 9–20.

[Yourdon 1989] E. Yourdon. Modern Structure Analysis. Englewood Cliffs, NJ: Prentice Hall

International, 1989.

362 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design

